mosmith3asu.github.io

Bio-inspired Passive Power Attenuation Mechanism for Jumping Robot

Return Home


Research Question

Mintchev, S., Shintake, J., & Floreano, D. (2018). Bioinspired dual-stiffness origami. Science Robotics, 3(20), eaau0275. https://doi.org/10.1126/scirobotics.aau0275

Kim, W., João, F., Tan, J., Mota, P., Vleck, V., Aguiar, L., & Veloso, A. (2013). The natural shock absorption of the leg spring. Journal of Biomechanics, 46(1), 129–136. https://doi.org/10.1016/j.jbiomech.2012.10.041

Han, D., Zhang, R., Yu, G., Jiang, L., Li, D., & Li, J. (2020). Study on bio-inspired feet based on the cushioning and shock absorption characteristics of the ostrich foot. PLOS ONE, 15(7), e0236324. https://doi.org/10.1371/journal.pone.0236324

Fiorini, P., & Burdick, J. (2003). The development of hopping capabilities for small robots. Autonomous Robots, 14(2–3), 239–254. https://doi.org/10.1023/A:1022239904879

Hyon, S. H., Emura, T., & Mita, T. (2003). Dynamics-based control of a one-legged hopping robot. Proceedings of the I MECH E Part I Journal of Systems & Control Engineering, 217(2), 83–98. https://doi.org/10.1243/095965103321512800

Pfeifer, R., & Gómez, G. (2009). Morphological Computation – Connecting Brain, Body, and Environment. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5436, Issue January 2006, pp. 66–83). https://doi.org/10.1007/978-3-642-00616-6_5

Goswami, D., & Vadakkepat, P. (2009). Planar Bipedal Jumping Gaits With Stable Landing. IEEE Transactions on Robotics, 25(5), 1030–1046. https://doi.org/10.1109/TRO.2009.2026502

Dallali, H., Kormushev, P., Tsagarakis, N. G., & Caldwell, D. G. (2014). Can active impedance protect robots from landing impact? 2014 IEEE-RAS International Conference on Humanoid Robots, 2015-Febru, 1022–1027. https://doi.org/10.1109/HUMANOIDS.2014.7041490

Gadekar, V. P. (2020). Design of Wings for Jump Gliding in a Biped Robot. Thesis. Arizona State University.

A. M. Hoover, S. Burden, S. Shankar Sastry, and R. S. Fearing, “Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot,” in 2010 3rd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, 2010, pp. 869–876.

D. W. Haldane, K. C. Peterson, F. L. Garcia Bermudez, and R. S. Fearing, “Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot,” in 2013 IEEE international conference on robotics and automation, 2013, pp. 3279–3286.

A. T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, and R. J. Wood, “High speed locomotion for a quadrupedal microrobot,” The International Journal of Robotics Research, May 2014.

Z. Xie, G. Berseth, P. Clary, J. Hurst and M. van de Panne, “Feedback Control For Cassie With Deep Reinforcement Learning,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 1241-1246, doi: 10.1109/IROS.2018.8593722.

S. Feng, E. Whitman, X. Xinjilefu and C. G. Atkeson, “Optimization based full body control for the atlas robot,” 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, 2014, pp. 120-127, doi: 10.1109/HUMANOIDS.2014.7041347.

Radford, N.A., Strawser, P., Hambuchen, K., Mehling, J.S., Verdeyen, W.K., Donnan, A.S., Holley, J., Sanchez, J., Nguyen, V., Bridgwater, L., Berka, R., Ambrose, R., Myles Markee, M., Fraser‐Chanpong, N.J., McQuin, C., Yamokoski, J.D., Hart, S., Guo, R., Parsons, A., Wightman, B., Dinh, P., Ames, B., Blakely, C., Edmondson, C., Sommers, B., Rea, R., Tobler, C., Bibby, H., Howard, B., Niu, L., Lee, A., Conover, M., Truong, L., Reed, R., Chesney, D., Platt, R., Jr, Johnson, G., Fok, C.‐L., Paine, N., Sentis, L., Cousineau, E., Sinnet, R., Lack, J., Powell, M., Morris, B., Ames, A. and Akinyode, J. (2015), Valkyrie: NASA’s First Bipedal Humanoid Robot. J. Field Robotics, 32: 397-419. https://doi.org/10.1002/rob.21560

Background and Biomechanics

M. J. Schwaner, D. C. Lin, and C. P. McGowan, “Jumping mechanics of desert kangaroo rats,” Journal of Experimental Biology, vol. 221, no. 22, 2018, doi: 10.1242/jeb.186700.

Jr. George A. Bartholomew and Jr. Herbert H. Caswell, “Locomotion in Kangaroo Rats and Its Adaptive Significance,” Journal of Mammalogy, vol. 32, no. 2, pp. 155–169, 1951.

A. A. Biewener and R. Blickhan, “Kangaroo rat locomotion: design for elastic energy storage or acceleration?,” The Journal of experimental biology, vol. 140, pp. 243–255, 1988.

J. W. Rankin, K. M. Doney, and C. P. McGowan, “Functional capacity of kangaroo rat hindlimbs: adaptations for locomotor performance,” Journal of the Royal Society Interface, vol. 15, no. 144, 2018, doi: 10.1098/rsif.2018.0303.

A. Biewener, R. M. N. Alexander, and N. C. Heglund, “Elastic energy storage in the hopping of kangaroo rats Dipodomys spectabilis,” Journal of Zoology, vol. 195, no. 3, pp. 369–383, 1981, doi: 10.1111/j.1469-7998.1981.tb03471.x.

U. Scarfogliero, C. Stefanini, and P. Dario, “Bioinspired jumping robot with elastic actuators and passive forelegs,” Proc. First IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics, 2006, BioRob 2006, vol. 2006, pp. 306–311, 2006, doi: 10.1109/BIOROB.2006.1639104.

Z. Zhang, J. Zhao, H. Chen, and D. Chen, “A Survey of Bioinspired Jumping Robot: Takeoff, Air Posture Adjustment, and Landing Buffer,” Applied Bionics and Biomechanics, vol. 2017. Hindawi Limited, 2017, doi: 10.1155/2017/4780160.

L. Bai, W. Ge, X. Chen, and R. Chen, “Design and dynamics analysis of a bio-inspired intermittent hopping robot for planetary surface exploration,” Int. J. Adv. Robot. Syst., vol. 9, pp. 1–11, 2012, doi: 10.5772/51930.

Z. Xu, T. Lü, and X. Wang, “Inertia matching manipulability and load matching optimization for humanoid jumping robot,” Int. J. Adv. Robot. Syst., vol. 9, no. 1, pp. 1–10, 2012, doi: 10.5772/50916.

R. Armour, K. Paskins, A. Bowyer, J. Vincent, and W. Megill, “Jumping robots: A biomimetic solution to locomotion across rough terrain,” Bioinspiration and Biomimetics, vol. 2, no. 3, 2007, doi: 10.1088/1748-3182/2/3/S01.

L. Bai, W. Ge, X. Chen, Q. Tang, and R. Xiang, “Landing Impact Analysis of a Bioinspired Intermittent Hopping Robot with Consideration of Friction,” Math. Probl. Eng., vol. 2015, pp. 1–12, 2015, doi: 10.1155/2015/374290.

C. Hong, D. Tang, Q. Quan, Z. Cao, and Z. Deng, “A combined series-elastic actuator & parallel-elastic leg no-latch bio-inspired jumping robot,” Mech. Mach. Theory, vol. 149, p. 103814, 2020, doi: 10.1016/j.mechmachtheory.2020.103814.

S. H. Hyon and T. Mita, “Development of a biologically inspired hopping robot - ‘Kenken,’” Proc. - IEEE Int. Conf. Robot. Autom., vol. 4, no. May, pp. 3984–3991, 2002, doi: 10.1109/robot.2002.1014356.

Mintchev, S., Shintake, J., & Floreano, D. (2018). Bioinspired dual-stiffness origami. Science Robotics, 3(20), eaau0275. https://doi.org/10.1126/scirobotics.aau0275